Real-time Clock Module (I²C Bus) #### **Features** - Uses external 32.768kHz quartz crystal for PT7C4337 - Supports I²C-Bus's high speed mode (400 kHz) - Includes time (Hour/Minute/Second) and calendar (Year/Month/Date/Day) counter functions (BCD code) - Programmable square wave output signal - Two Time-of-Day Alarms - Oscillator Stop Flag - Operating range: 1.8V to 5.5V - Timekeeping range: 1.2V to 1.8V - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) - For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. https://www.diodes.com/quality/product-definitions/ - Packaging (Pb-free & Green) - 8-Pin, SOIC (W) - 8-Pin, MSOP (U) - 8-Pin, TDFN (ZE) - 8-Pin, TSSOP (L) ## **Description** The PT7C4337 serial real-time clock is a low-power clock/calendar with two programmable time-of-day alarms and a programmable square-wave output. Address and data are transferred serially via a 2-wire, bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The device is fully accessible through the serial interface while VCC is between 1.8V and 5.5V. I²C operation is not guaranteed below 1.8V. Timekeeping operation is maintained with VCC as low as 1.2V. Table 1 shows the basic functions of PT7C4337. More details are shown in section: overview of functions. Table 1. Basic Functions of PT7C4337 | Item | Function | | | PT7C4337 | |------|------------------|---------------------------------|--------------------|----------------------------| | | | Source | Crystal(32.768KHz) | External crystal | | 1 | Oscillator | Oscillator enable/ | /disable | √ | | | | Oscillator fail det | ect | √ | | | Time | Time | 12-hour | √ | | | | display | 24-hour | √ | | 2 | | Century bit | | Not Supported | | | | Time count chain enable/disable | | √ | | 3 | Interrupt | Alarm interrupt o | utput | √2 | | 4 | Programmable squ | are wave output (Hz | z) | 1, 4.096k, 8.192k, 32.768k | | 5 | Communication | 2-wire I ² C bus | | √ | #### Notes: ^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. ^{2.} See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. ^{3.} Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. ## Pin Configuration ## Pin Description | Pin# | Pin | Type | Description | |------|-----------|------|--| | 1 | X1 | I | Oscillator Circuit Input. Together with X1, 32.768kHz crystal is connected between them. Or external clock input. | | 2 | X2 | О | Oscillator Circuit Output. Together with X1, 32.768kHz crystal is connected between them. When 32.768kHz external input, X2 must be float. | | 6 | SCL | I | Serial Clock Input. SCL is used to synchronize data movement on the I ² C serial interface. | | 5 | SDA | I/O | Serial Data Input/Output. SDA is the input/output pin for the 2-wire serial interface. The SDA pin is open-drain output and requires an external pull-up resistor. | | 3 | INTA | О | Interrupt Output. When enabled, INTA is asserted low when the time matches the values set in the alarm registers. This pin is an open-drain output and requires an external pull up resistor. | | 7 | SQW/ INTB | О | Square-Wave/Interrupt Output. Programmable square-wave or interrupt output signal. It is an open-drain output and requires an external pull up resistor. | | 8 | VCC | P | Power. Primary power for PT7C4337. | | 4 | GND | P | Ground. | | / | NC | | No Connect. These pins are not connected internally, but must be grounded for proper operation. | ## **Maximum Ratings** | Storage Temperature | 65°C to +150°C | |--|----------------------------| | Supply Voltage to Ground Potential (V _{CC} to G | ND)0.3V to +6.5V | | DC Input (All Other Inputs except Vcc & GND) | -0.3V to $(V cc +0.3V)$ | | DC Output Voltage (SDA, /INTA, /INTB pins) | 0.3V to +6.5V | | DC Output Current (FOUT) | 0.3V to (Vcc +0.3V) | | Power Dissipation | . 320mW(depend on package) | | Junction Temperature | 125°C | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ## **Operating Mode** The amount of current consumed by the PT7C4337 is determined, in part, by the I^2C interface and oscillator operation. The following table shows the relationship between the operating mode and the corresponding I_{CC} parameter. | Operating Mode | V _{CC} | Power | |--|----------------------------|---| | I ² C Interface Active | $1.8V \le V_{CC} \le 5.5V$ | I _{CC} Active (I _{CCA}) | | I ² C Interface Inactive | $1.8V \le V_{CC} \le 5.5V$ | I _{CC} Standby (I _{CCS}) | | I ² C Interface Inactive | $1.2V \le V_{CC} \le 1.8V$ | Timekeeping (I _{CCTOSC}) | | I ² C Interface Inactive, Oscillator Disabled | $1.2V \le V_{CC} \le 1.8V$ | Data Retention (I _{CCTDDR}) | **Recommended Operating Conditions** | Part # | Sym. | Desc | Min | Type | Max | Unit | | |----------|---|-----------------------------|----------|--------------------|-----|----------------------|------------| | | V _{CC} | V supply voltage | | 1.8 | 3.3 | 5.5 | | | | $V_{\rm CCT}$ $V_{\rm CC}$ supply voltage | | 1.2 | - | 1.8 | | | | | V_{OSC} | Oscillator start up voltage | | 1.2 | - | 5.5 | | | PT7C4337 | V _{IH} Input high level | | SCL, SDA | 0.7V _{CC} | - | V _{CC} +0.3 | V | | 11701337 | | INTA , SQW/ INTB | - | - | 5.5 | | | | | V_{IL} | Input low level | | -0.3 | - | 0.3V _C | | | | T_A | Operating temperature | | -40 | - | 85 | $^{\circ}$ | ## **DC** Electrical Characteristics Unless otherwise specified, V_{CC} = 1.8~5.5V, T_A = -40 $^{\circ}C$ to +85 $^{\circ}C$ | Sym. | Item | Pin | Condition | Min | Тур | Max | Unit | |------------------|--------------------------|-------------------|----------------------|-------------|------|----------------------|------| | V _{CC} | Supply voltage | V _{CC} | Full operation | 1.8 | - | 5.5 | V | | V _{CCT} | Suppry voltage | V CC | Timekeeping (Note 5) | 1.2 | - | 1.8 | | | V _{OSC} | Oscillator voltage | V _{CC} | | 1.2 | - | 5.5 | V | | V_{IL1} | Low-level input voltage | SCL | | -0.3 | - | $0.3V_{CC}$ | V | | V_{IH1} | High-level input voltage | SCL | | $0.7V_{CC}$ | - | V _{CC} +0.3 | V | | $V_{\rm IL2}$ | Low-level input voltage | X1 | | - | 0.53 | - | V | | V_{IH2} | High-level input voltage | X1 | | - | 0.53 | - | V | | I _{OL} | Low-level output current | SDA, /INTA, /INTB | $V_{OL} = 0.4V$ | 3 | - | - | mA | | I_{IL} | Input leakage current | SCL | | -1 | - | 1 | μΑ | | I_{OZ} | Output current when OFF | SDA, /INTA, /INTB | | -1 | ı | 1 | μΑ | ## **DC Electrical Characteristics** | Sym. | Item | Pin | Condition | Min | Тур | Max | Unit | | | | |---------------------|---|---|--------------|-----|-----|-----|------|--|--|--| | Unless oth | Unless otherwise specified, $V_{CC} = 1.3 \sim 1.8 \text{V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ | | | | | | | | | | | I _{CCTOSC} | Timekeeping current | V _{CC} | Note 2, 4, 5 | - | 450 | 800 | nA | | | | | I_{CCTDDR} | Data retention current | V _{CC} | Note 2,4,5,6 | - | - | 160 | пл | | | | | Unless of | herwise specified, $V_{CC} = 1$. | $8 \sim 3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to}$ | +85 °C | | | | | | | | | I_{CCA} | Active supply current | V _{CC} | Note 1, 5 | - | - | 100 | ^ | | | | | I _{CCS} | Standby current | V _{CC} | Note 2, 3, 5 | - | 0.6 | 1.0 | μΑ | | | | | Unless of | Unless otherwise specified, $V_{CC} = 3.6 \sim 5.5 \text{V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ | | | | | | | | | | | I_{CCA} | Active supply current | V _{CC} | Note 1, 5 | - | - | 150 | ^ | | | | | I _{CCS} | Standby current | V _{CC} | Note 2, 3, 5 | - | 1.0 | 1.8 | μΑ | | | | #### Note: - SCL clocking at max frequency = 400 kHz, $V_{IL} = 0.0 V$, $V_{IH} = VCC$. Specified with 2-wire bus inactive, $V_{IL} = 0.0 V$, $V_{IH} = VCC$. 1. - 2. - SQW enabled. - $\widetilde{Spec}\mbox{ified}$ with the SQW function disabled by setting $\mbox{INTCN}=1.$ 4. 5. - Using recommended crystal on X1 and X2. Crystal oscillator is disabled. - 6. ## **Recommended Layout for Crystal** **Built-in Capacitors Specifications and Recommended External Capacitors** | Parameter | Parameter | | | Unit | |--|-----------|----------------|----|------| | Duild in conscitous | X1 to GND | C_{G} | 12 | pF | | Build-in capacitors | X2 to GND | C_D | 12 | pF | | Recommended External capacitors for | X1 to GND | C ₁ |
13 | pF | | crystal C _L =12.5pF | X2 to GND | C_2 | 13 | pF | | Recommended External capacitors for crystal C_L =6pF | X1 to GND | C ₁ | 0 | pF | | | X2 to GND | C_2 | 0 | pF | **Note**: The frequency of crystal can be optimized by external capacitor C_1 and C_2 , for frequency=32.768KHz, C_1 and C_2 should meet the equation as below: $Cpar + [(C_1+C_G)*(C_2+C_D)]/[(C_1+C_G)+(C_2+C_D)] = C_L$ ## Cpar is all parasitical capacitor between X1 and X2. C_L is crystal's load capacitance. ### **Crystal Specifications** | Parameter | Symbol | Min | Тур | Max | Unit | |-------------------|------------------|-----|--------|-----|------| | Nominal Frequency | f_{O} | - | 32.768 | - | kHz | | Series Resistance | ESR | - | - | 70 | kΩ | | Load Capacitance | C_{L} | - | 6/12.5 | - | pF | ## **AC Electrical Characteristics** | Ī | Sym | Description | Value | Unit | |---|----------|---|-----------------------|------| | Ī | V_{HM} | Rising and falling threshold voltage high | $0.8~\mathrm{V_{CC}}$ | V | | ſ | V_{HL} | Rising and falling threshold voltage low | $0.2~\mathrm{V_{CC}}$ | V | ### Over the operating range | Symbol | Item | Min. | Тур. | Max. | Unit | |----------------------|--|------|------|------|------| | f_{SCL} | SCL clock frequency | - | - | 400 | kHz | | t _{SU;STA} | START condition set-up time | 0.6 | - | - | μs | | t _{HD;STA} | START condition hold time | 0.6 | - | - | μs | | t _{SU;DAT} | Data set-up time (RTC read/write) | 200 | - | - | ns | | t _{HD;DAT1} | Data hold time (RTC write) | 35 | - | - | ns | | t _{HD;DAT2} | Data hold time (RTC read) | 0 | - | - | μs | | t _{SU;STO} | STOP condition setup time | 0.6 | - | - | μs | | t _{BUF} | Bus idle time between a START and STOP condition | 1.3 | - | - | μs | | t_{LOW} | When SCL = "L" | 1.3 | - | - | μs | | t _{HIGH} | When SCL = "H" | 0.6 | - | - | μs | | t _r | Rise time for SCL and SDA | - | - | 0.3 | μs | | $t_{\rm f}$ | Fall time for SCL and SDA | - | - | 0.3 | μs | | t _{SP} * | Allowable spike time on bus | - | - | 50 | ns | | C _B | Capacitance load for each bus line | - | - | 400 | pF | | C _{I/O} * | I/O Capacitance (SDA, SCL) | - | - | 10 | pF | | T _{OSF} | Oscillator Stop Flag (OSF) Delay | - | - | 100 | ms | ^{*} Note: only reference for design ## **Function Block Diagram** ### **Oscillator Circuit** ### PT7C4337 The PT7C4337 uses an external 32.768 kHz crystal. Table2 specifies several crystal parameters for the external crystal. The *Block Diagram* shows a functional schematic of the oscillator circuit. The startup time is usually less than 1 second when using a crystal with the specified characteristics. **Table 2 Crystal Specifications** | Parameter | Symbol | Min | Тур | Max | Unit | |-------------------|------------------|-----|--------|-----|------| | Nominal Frequency | f_{O} | - | 32.768 | - | kHz | | Series Resistance | ESR | - | - | 70 | kΩ | | Load Capacitance | C_{L} | - | 6/12.5 | - | pF | Note: The crystal, traces, and crystal input pins should be isolated from RF generating signals. #### **Clock Accuracy** The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was trimmed. Crystal frequency drift caused by temperature shifts creates additional error. External circuit noise coupled into the oscillator circuit can result in the clock running fast. Figure 1 shows a typical PC board layout for isolating the crystal and oscillator from noise. ## **Function Description** #### **Overview of Functions** #### **Clock Function** CPU can read or write data including the year (last two digits), month, date, day, hour, minute, and second. Any (two-digit) year that is a multiple of 4 is treated as a leap year and calculated automatically as such until the year 2100. #### **Alarm Function** This device has two alarm system (Alarm 1 and Alarm 2) that outputs interrupt signals from INTA or INTB to CPU when the date, day of the week, hour, minute or second correspond to the setting. Each of them may output interrupt signal separately at a specified time. The alarm is be selectable between on and off for matching alarm or repeating alarm. #### **Programmable Square Wave Output** A square wave output enable bit controls square wave output at pin 7. Frequencies are selectable: 1, 4.096k, 8.192k, 32.768k Hz. #### **Interface with CPU** Data is read and written via the I²C bus interface using two signal lines: SCL (clock) and SDA (data). Since the output of the I/O pin SDA is open drain, a pull-up resistor should be used on the circuit board if the CPU output I/O is also open drain. The SCL's maximum clock frequency is 400 kHz, which supports the I²C bus's high-speed mode. #### **Oscillator Fail Detect** When oscillator fail, PT7C4337 OSF bit will be set. #### Oscillator enable/disable Oscillator and time count chain can be enabled or disabled at the same time by /ETIME bit. ## **Registers** Allocation of Registers | Addr. | E4' | | | | Register l | Definition | | | | |---------|--------------------------|-------------------|---------------|--------------|------------|------------|-----------|-----------|-----------| | (hex)*1 | Function | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 00 | Seconds (00-59) | 0 | S40 | S20 | S10 | S 8 | S4 | S2 | S1 | | 01 | Minutes (00-59) | 0 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 02 | Hours (00-23 / 01-12) | 0 | 12, /24 | H20 or P, /A | H10 | Н8 | H4 | H2 | H1 | | 03 | Days of the week (01-07) | 0 | 0 | 0 | 0 | 0 | W4 | W2 | W1 | | 04 | Dates (01-31) | 0 | 0 | D20 | D10 | D8 | D4 | D2 | D1 | | 05 | Months (01-12) | 0 | 0 | 0 | MO10 | MO8 | MO4 | MO2 | MO1 | | 06 | Years (00-99) | Y80 | Y40 | Y20 | Y10 | Y8 | Y4 | Y2 | Y1 | | 07 | Alarm 1: Seconds | A1M1*2 | S40 | S20 | S10 | S8 | S4 | S2 | S1 | | 08 | Alarm 1: Minutes | A1M2*2 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 09 | Alarm 1: Hours | A1M3*2 | 12, /24 | H20 or P, /A | H10 | Н8 | H4 | H2 | H1 | | 0A | Alarm 1: Day, Date | A1M4*2 | Day,
/Date | 0,
D20 | 0,
D10 | 0,
D8 | W4,
D4 | W2,
D2 | W1,
D1 | | 0B | Alarm 2: Minutes | A2M2*3 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 0C | Alarm 2: Hours | A2M3*3 | 12, /24 | H20 or P, /A | H10 | Н8 | H4 | H2 | H1 | | 0D | Alarm 2: Day, Date | A2M4*3 | Day,
/Date | 0,
D20 | 0,
D10 | 0,
D8 | W4,
D4 | W2,
D2 | W1,
D1 | | 0E | Control | /ETIME*4 | 0 | 0 | RS2*5 | RS1*5 | INTCN*6 | A2IE*7 | A1IE*7 | | 0F | Status | OSF ^{*9} | 0 | 0 | 0 | 0 | 0 | A2F*8 | A1F*8 | #### Caution Points: - *1. PT7C4337 uses 8 bits for address. For excess 0FH address, PT7C4337 will not respond (no acknowledge signal was given). - *2. Alarm 1 mask bits. Select alarm repeated rate when an alarm occurs. - *3. Alarm 2 mask bits. Select alarm repeated rate when an alarm occurs. - *4. Oscillator and time count chain enable/disable bit. - *5. Square wave output frequency select. - *6. Interrupt output pin select bit. - *7. Alarm 1 and alarm 2 enable bits. - *8. Alarm 1 and alarm 2 flag bits. - *9. Oscillator stop flag. - *10. All bits marked with "0" are read-only bits. Their value when read is always "0". **Control and Status Register** | 002202 | or arra Status rec | 5-200- | | | | | | | | |----------------|--------------------|--------|----|----|-----|-----|-------|-----------|-----------| | Addr.
(hex) | Description | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | 0E | Control | /ETIME | 0 | 0 | RS2 | RS1 | INTCN | A2IE | A1IE | | UE | (default) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | 0F | Status | OSF | 0 | 0 | 0 | 0 | 0 | A2F | A1F | | UF | (default) | 1 | 0 | 0 | 0 | 0 | 0 | Undefined | Undefined | #### **Oscillator Related Bits** #### /ETIME Enable oscillator and time count chain bit. | /ETIME | Data | Description | | |--------------|------|--|---------| | Read / Write | 0 | Enable oscillator and time count chain. | Default | | Read / Wille | 1 | Disable oscillator and time count chain. | | #### OSF #### Oscillator Stop Flag. A logic 1 in this bit indicates that the oscillator either is stopped or was stopped for some period of time and may be used to judge the validity of the clock and calendar data. This bit is set to logic 1 anytime that the oscillator stops. The following are examples of conditions that can cause the OSF bit to be set: - 1) The first time power is applied. - 2) The voltage present on VCC is insufficient to support oscillation. - 3) The /ETIME bit is turned off. - 4) External influences on the crystal (e.g., noise, leakage, etc.). This bit remains at logic 1 until written to logic 0. #### **Square Wave Frequency Selection Bits** #### RS2, RS1 Square wave Rate Select. These bits control the frequency of the square-wave output when the square wave has been enabled. | RS2, RS1 | Data | SQW output freq. (Hz) | |--------------|------|-----------------------| | | 00 | 1 | | Read / Write | 01 | 4.096k | | Read / Wille | 10 | 8.192k | | | 11 | 32.768k Default | ### **Interrupt related bits** #### INTCN Interrupt Output pin select bit. This bit controls the relationship between the two alarms and the interrupt output pins. | INTCN | Data | Description | |--------|------|--| | Read / | 1 | A match between the timekeeping registers and the alarm 1 registers activates the INTA pin (if the alarm 1 is enabled) and a match between the timekeeping registers and the alarm 2 registers activates the SQW/INTB pin (if the alarm 2 is enabled). | | Write | 0 | A match between the timekeeping registers and either alarm 1 or alarm
2 registers activates the INTA pin (if the alarms are enabled). In this configuration, a square wave is output on the SQW/INTB pin. | #### A1IE Alarm 1 Interrupt Enable. | A1IE | Data | Description | | | | | | |--------|------|---|---------|--|--|--|--| | Read / | 0 | The A1F bit does not initiate the INTA signal. | Default | | | | | | Write | 1 | Permits the alarm 1 flag (A1F) bit in the status register to assert INTA. | | | | | | ## • A1F #### Alarm 1 Flag. | marin i i iag. | | | | |----------------|------|---|------| | A1F | Data | Description | | | Read / Write | 0 | The time do not match the alarm 1 registers. Defa | ıult | | Read | 1 | Indicates that the time matched the alarm 1 registers. If the A1IE bit is also logic 1, the INTA pin goes low. A1F is cleared when written to logic 0. Attempting to write to logic 1 leaves the value unchanged. | | ### • **A2IE** Alarm 2 Interrupt Enable. | A2IE | Data | Description | | |---|------|--|------| | | 0 | The A2F bit does not initiate an interrupt signal. Defa | ault | | Read /
Write | 1 | Permits the alarm 2 flag (A2F) bit in the status register to assert INTA (when INTCN = 0) or to assert | sert | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | $\overline{SQW/INTB}$ (when INTCN = 1). | | ### • A2F Alarm 2 Flag. | A1F | Data | Description | |-----------------|------|---| | Read /
Write | 0 | The time do not match the alarm 2 registers. Defaul | | Read | 1 | Indicates that the time matched the alarm 1 registers. This flag can be used to generate an interrupt on either INTA or SQW/INTB depending on the status of the INTCN bit. If the INTCN = 0 and A2F = 1 (and A2IE = 1), the INTA pin goes low. If the INTCN = 1 and A2F = 1 (and A2IE = 1), the SQW/INTB pin goes low. A2F is cleared when written to logic 0. Attempting to write to logic 1 leaves the value unchanged. | ### **Time Counter** Time digit display (in BCD code): - Second digits: Range from 00 to 59 and carried to minute digits when incremented from 59 to 00. - Minute digits: Range from 00 to 59 and carried to hour digits when incremented from 59 to 00. - Hour digits: See description on the /12, 24 bit. Carried to day and day-of-the-week digits when incremented from 11 p.m. to 12 a.m. or 23 to 00. | Addr. (hex) | Description | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-------------|-------------|----|-----------|-------------|-----------|-----------|-----------|-----------|-----------| | 00 | Seconds | 0 | S40 | S20 | S10 | S8 | S4 | S2 | S1 | | 00 | (default) | 0 | Undefined | 01 | Minutes | 0 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 01 | (default) | 0 | Undefined | 02 | Hours | 0 | 12, /24 | H20 or P,/A | H10 | Н8 | H4 | H2 | H1 | | 02 | (default) | 0 | Undefined Note: Any registered imaginary time should be replaced with correct time, otherwise it will cause the clock counter malfunction. #### • 12, /24 bit This bit is used to select between 12-hour clock system and 24-hour clock system. | 12, /24 | Data | Description | |--------------|------|----------------| | Read / Write | 0 | 24-hour system | | Read / Write | 1 | 12-hour system | This bit is used to select between 12-hour clock operation and 24-hour clock operation. | 12, /24 | Description | Hours register | | | | | | |---------|----------------------|----------------|---------------|---------------|---------------|--|--| | | | 24-hour clock | 12-hour clock | 24-hour clock | 12-hour clock | | | | | | 00 | 52 (AM 12) | 12 | 72 (PM 12) | | | | 0 | 24 hove time display | 01 | 41 (AM 01) | 13 | 61 (PM 01) | | | | 0 | 24-hour time display | 02 | 42 (AM 02) | 14 | 62 (PM 02) | | | | | | 03 | 43 (AM 03) | 15 | 63 (PM 03) | | | | | | 04 | 44 (AM 04) | 16 | 64 (PM 04) | | | | | | 05 | 45 (AM 05) | 17 | 65 (PM 05) | | | | | | 06 | 46 (AM 06) | 18 | 66 (PM 06) | | | | | | 07 | 47 (AM 07) | 19 | 67 (PM 07) | | | | 1 | 12 hazartina diantan | 08 | 48 (AM 08) | 20 | 68 (PM 08) | | | | 1 | 12-hour time display | 09 | 49 (AM 09) | 21 | 69 (PM 09) | | | | | | 10 | 50 (AM 10) | 22 | 70 (PM 10) | | | | | | 11 | 51 (AM 11) | 23 | 71 (PM 11) | | | ^{*} Be sure to select between 12-hour and 24-hour clock operation before writing the time data. ### Days of the Week Counter The day counter is a divide-by-7 counter that counts from 01 to 07 and up 07 before starting again from 01. Values that correspond to the day of week are user defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation. | Addr. (hex) | Description | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D 0 | |-------------|------------------|----|----|----|----|----|-----------|-----------|------------| | 03 | Days of the week | 0 | 0 | 0 | 0 | 0 | W4 | W2 | W 1 | | 03 | (default) | 0 | 0 | 0 | 0 | 0 | Undefined | Undefined | Undefined | #### Calendar Counter The data format is BCD format. • Day digits: Range from 1 to 31 (for January, March, May, July, August, October and December). Range from 1 to 30 (for April, June, September and November). Range from 1 to 29 (for February in leap years). Range from 1 to 28 (for February in ordinary years). Carried to month digits when cycled to 1. - Month digits: Range from 1 to 12 and carried to year digits when cycled to 1. - Year digits: Range from 00 to 99 and 00, 04, 08, ..., 92 and 96 are counted as leap years. | Addr. (hex) | Description | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D 0 | |-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | 04 | Dates | 0 | 0 | D20 | D10 | D8 | D4 | D2 | D1 | | 04 | (default) | 0 | 0 | Undefined | Undefined | Undefined | Undefined | Undefined | Undefined | | 05 | Months | 0 | 0 | 0 | M10 | M8 | M4 | M2 | M1 | | 03 | (default) | 0 | 0 | 0 | Undefined | Undefined | Undefined | Undefined | Undefined | | 06 | Years | Y80 | Y40 | Y20 | Y10 | Y8 | Y4 | Y2 | Y1 | | 00 | (default) | Undefined #### **Alarm Register** ## • Alarm 1, Alarm 2 Register | Addr. | Description | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-------|--------------------|-------------|-----------------------------|-------------|-----------|------------|-----------|-----------|-----------| | 07 | Alarm 1: Seconds | $A1M1^{*1}$ | S40 | S20 | S10 | S 8 | S4 | S2 | S1 | | 07 | (default) | Undefined | 08 | Alarm 1: Minutes | $A1M2^{*1}$ | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 08 | (default) | Undefined | 09 | Alarm 1: Hours | A1M3*1 | 12, /24 | H20 or P,/A | H10 | Н8 | H4 | H2 | H1 | | 09 | (default) | Undefined | | Alarm 1: Day, Date | A1M4*1 | Day,
/Date ^{*1} | 0, | 0, | 0, | W4, | W2, | W1, | | 0A | marin 1. Buy, Bute | 7 1 1 1 1 | /Date ^{**1} | D20 | D10 | D8 | D4 | D2 | D1 | | | (default) | Undefined | 0B | Alarm 2: Minutes | $A2M2^{*2}$ | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | UB | (default) | Undefined | 0C | Alarm 2: Hours | A2M3*2 | 12, /24 | H20 or P,/A | H10 | Н8 | H4 | H2 | H1 | | UC. | (default) | Undefined | | A1 2. D D.t. | A2M4*2 | Day, | 0, | 0, | 0, | W4, | W2, | W1, | | 0D | Alarm 2: Day, Date | AZIVI4 | Day,
/Date ^{*2} | D20 | D10 | D8 | D4 | D2 | D1 | | | (default) | Undefined ^{*1} Note: Alarm mask bit, using to select Alarm 1 alarm rate. ^{*2} Note: Alarm mask bit, using to select Alarm 2 alarm rate. ## Alarm Function Related Register | Addr. | Function | | | | Register | definition | | | | |-------|---------------------|--------|---------------|-----------------|-----------|------------|-----------|-----------|-----------| | (hex) | Function | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | 00 | Seconds | 0 | S40 | S20 | S10 | S8 | S4 | S2 | S1 | | 01 | Minutes | 0 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 02 | Hours | 0 | 12, /24 | H20 or
A, /P | H10 | Н8 | H4 | H2 | H1 | | 03 | Days of the week | 0 | 0 | 0 | 0 | 0 | W4 | W2 | W1 | | 04 | Dates | 0 | 0 | D20 | D10 | D8 | D4 | D2 | D1 | | 07 | Alarm 1: Seconds | A1M1 | S40 | S20 | S10 | S8 | S4 | S2 | S1 | | 08 | Alarm 1: Minutes | A1M2 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 09 | Alarm 1: Hours | A1M3 | 12, /24 | H20 or
A, /P | H10 | Н8 | H4 | H2 | H1 | | 0A | Alarm 1: Day, Date | A1M4 | Day,
/Date | 0,
D20 | 0,
D10 | 0,
D8 | W4,
D4 | W2,
D2 | W1,
D1 | | 0B | Alarm 2: Minutes | A2M2 | M40 | M20 | M10 | M8 | M4 | M2 | M1 | | 0C | Alarm 2: Hours | A2M3 | 12, /24 | H20 or
A, /P | H10 | Н8 | H4 | H2 | H1 | | 0D | Alarm 2: Day, Date | A2M4 | Day, | 0, | 0, | 0, | W4, | W2, | W1, | | UD | Alaini 2. Day, Date | A21V14 | /Date | D20 | D10 | D8 | D4 | D2 | D1 | | 0E | Control | /ETIME | 0 | 0 | RS2 | RS1 | INTCN | A2IE | A1IE | | 0F | Status | OSF | 0 | 0 | 0 | 0 | 0 | A2F | A1F | Note: Alarm function does not support different hour system adopted in time and alarm register. The PT7C4337 contains two time-of-day/date alarms. The alarms can be programmed (by the INTCN bit of the control register) to operate in two different modes - each alarm can drive its own separate interrupt output or both alarms can drive a common interrupt output. Bit 7 of each of the time-of-day/date alarm registers are mask
bits. When all of the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers $00h \sim 04h$ match the values stored in the time-of-day/date alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. Table 2 and Table 3 shows the possible settings. The Day, /Date bits (bit 6 of the alarm day/date registers) control whether the alarm value stored in bits $0 \sim 5$ of that register reflects the day of the week or the date of the month. If the bit is written to logic 0, the alarm is the result of a match with date of the month. If the bit is written to logic 1, the alarm is the result of a match with day of the week. When the PT7C4337 register values match alarm register settings, the corresponding alarm flag (A1F or A2F) bit is set to logic 1. If the corresponding alarm interrupt enable (A1IE or A2IE) is also set to logic 1, the alarm condition activates one of the interrupt output (INTA or SQW/INTB) signals. The match is tested on the once-per-second update of the time and date registers. Table 1. Alarm 1 Mask Bits | Day, | Ala | rm 1 regis | ster mask | bits | Alarm Rate | |-------|------|------------|-----------|------|--| | /Date | A1M4 | A1M3 | A1M2 | A1M1 | Alariii Rate | | × | 1 | 1 | 1 | 1 | Alarm once per second | | × | 1 | 1 | 1 | 0 | Alarm when seconds match | | × | 1 | 1 | 0 | 0 | Alarm when minutes and seconds match | | × | 1 | 0 | 0 | 0 | Alarm when hours, minutes, and seconds match | | 0 | 0 | 0 | 0 | 0 | Alarm when date, hours, minutes, and seconds match | | 1 | 0 | 0 | 0 | 0 | Alarm when day, hours, minutes, and seconds match | | | | Others | | | Ignored. | ### Table 2. Alarm 2 Mask Bits | Day, | Alarn | arm 2 register mask bits | | Alarm Rate | |-------|-------|--------------------------|------|--| | /Date | A2M4 | A2M3 | A2M2 | Alariii Kate | | × | 1 | 1 | 1 | Alarm once per minute (00 seconds of every minute) | | × | 1 | 1 | 0 | Alarm when minutes match | | × | 1 | 0 | 0 | Alarm when hours, minutes | | 0 | 0 | 0 | 0 | Alarm when date, hours, and minutes match | | 1 | 0 | 0 | 0 | Alarm when day, hours, and minutes match | | | (| Others | | Ignored. | ## I²C Bus Interface #### Overview of I²C-BUS The I²C bus supports bi-directional communications via two signal lines: the SDA (data) line and SCL (clock) line. A combination of these two signals is used to transmit and receive communication start/stop signals, data signals, acknowledge signals, and so on. Both the SCL and SDA signals are held at high level whenever communications are not being performed. The starting and stopping of communications is controlled at the rising edge or falling edge of SDA while SCL is at high level. During data transfers, data changes that occur on the SDA line are performed while the SCL line is at low level, and on the receiving side the data is captured while the SCL line is at high level. In either case, the data is transferred via the SCL line at a rate of one bit per clock pulse. The I²C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device and the receiving device responds to communications only when its slave address matches the slave address in the received data. ## **System Configuration** All ports connected to the I²C bus must be either open drain or open collector ports in order to enable AND connections to multiple devices. SCL and SDA are both connected to the VDD line via a pull-up resistance. Consequently, SCL and SDA are both held at high level when the bus is released (when communication is not being performed). Figure 1. System configuration ## Starting and Stopping I²C Bus Communications Figure 2. Starting and Stopping on I²C Bus #### 1) START Condition, Repeated START Condition, and STOP Condition - a) START condition - SDA level changes from high to low while SCL is at high level - b) STOP condition - SDA level changes from low to high while SCL is at high level - c) Repeated START condition (RESTART condition) In some cases, the START condition occurs between a previous START condition and the next STOP condition, in which case the second START condition is distinguished as a RESTART condition. Since the required status is the same as for the START condition, the SDA level changes from high to low while SCL is at high level. ## 2) Data Transfers and Acknowledge Responses during I²C-BUS Communication #### a) Data Transfers Data transfers are performed in 8-bit (1 byte) units once the START condition has occurred. There is no limit on the amount (bytes) of data that are transferred between the START condition and STOP condition. The address auto increment function operates during both write and read operations. Updating of data on the transmitter (transmitting side)'s SDA line is performed while the SCL line is at low level. The receiver (receiving side) captures data while the SCL line is at high level. ^{*}Note with caution that if the SDA data is changed while the SCL line is at high level, it will be treated as a START, RESTART, or STOP condition. ## b) Data Acknowledge Response (ACK signal) When transferring data, the receiver generates a confirmation response (ACK signal, low active) each time an 8-bit data segment is received. If there is no ACK signal from the receiver, it indicates that normal communication has not been established. (This does not include instances where the master device intentionally does not generate an ACK signal.) Immediately after the falling edge of the clock pulse corresponding to the 8th bit of data on the SCL line, the transmitter releases the SDA line and the receiver sets the SDA line to low (= acknowledge) level. After transmitting the ACK signal, if the Master remains the receiver for transfer of the next byte, the SDA is released at the falling edge of the clock corresponding to the 9th bit of data on the SCL line. Data transfer resumes when the Master becomes the transmitter. When the Master is the receiver, if the Master does not send an ACK signal in response to the last byte sent from the slave, that indicates to the transmitter that data transfer has ended. At that point, the transmitter continues to release the SDA and awaits a STOP condition from the Master. #### **Slave Address** The I²C bus device does not include a chip select pin such as is found in ordinary logic devices. Instead of using a chip select pin, slave addresses are allocated to each device. All communications begin with transmitting the [START condition] + [slave address (+ R/W specification)]. The receiving device responds to this communication only when the specified slave address it has received matches its own slave address. Slave addresses have a fixed length of 7 bits. See table for the details. An R/\overline{W} bit is added to each 7-bit slave address during 8-bit transfers. | Onevation | Transfer data | | | Sla | ave addre | ess | | | R / W bit | |-----------|---------------|-------|-------|-------|-----------|-------|-------|-------|-------------| | Operation | Transfer data | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 | | Read | D1 h | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 (= Read) | | Write | D0 h | 1 | 1 | U | 1 | U | U | U | 0 (= Write) | ## I²C Bus's Basic Transfer Format ## 1) Write via I²C Bus | s | | Slav | e ac | dres | s (7 | bits) | | write | Α | · | Α | ddr. | settin | g | • | • | Α | bit | bit
6 | bit
5 | | bit
3 | bit
2 | bit | bit | Α | Р | |-------|------|-------|-------|--------|--------|--------|-------|-------|-------|------------|---|-------|--------|------|------|---|-------------|----------|----------|----------|---|----------|----------|-----|-----|-----|------| | | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | | | | | | | | | <i>'</i> | 0 | 5 | 4 | 3 | | | U | | | | Start | Slav | ve ad | dress | s + wr | ite sp | ecific | ation | | A C K | Add
Spe | | write | start | addr | ess. | | A
C
K | Wri | te da | ta | | | | | | ACK | Stop | ## 2) Read via I²C Bus #### a) Standard Read ## b) Simplified Read | s | Slave add | 1 1 | its) 0 | Read
1 | Α | bit
7 | bit
6 | bit
5 | bit
4 | bit
3 | bit
2 | bit
1 | bit
0 | Α | bit
7 | bit
6 | bit
5 | bit
4 | bit
3 | bit
2 | bit
1 | bit
0 | /A | Р | |-------|---------------|------------|------------|-----------|-------------|----------|----------|------------------|-----------------------------|----------|----------|----------|----------|-------------|----------|----------|-------------|----------|----------|----------|----------|----------|-----------|------| | Start | Slave address | + read spe | ecificatio | n | A
C
K | by tl | he int | ead fr
ternal | Data rom the address incren | ie add | dress | | | A
C
K | | addre | D
regist | | to inc | reme | | | N O A C K | Stop | #### Note: - 1. The above steps are an example of transfers of one or two bytes only. There is no limit to the number of bytes transferred during actual communications. - 2. 49H, 4AH are used as test mode address. Customer should not use the addresses. ## **Part Marking** #### W Package PT7C 4337WE XYWXX 1st X: Die Rev Y: Date Code (Year) W: Date Code (Workweek) 2nd X: Assembly Site Code 3rd X: Fab Site Code #### U Package PT7C4337UE-36 P17C4337UE-36 7C43 37UE TYWXX T: Die Rev Y: Date Code (Year) W: Date Code (Workweek) 1st X: Assembly Site Code (Variable) 2nd X: Wafer Fab Site Code (Variable) #### **ZE Package** jF: PT7C4337ZEE 1st X: Die Rev Y: Date Code (Year) W: Date Code (Workweek) 2nd X: Assembly Site Code 3rd X: Fab Site Code #### L Package 7C43 37LE • XABJW 7C4337LE: Marking ID XAB: Die Rev/Year and Workweek of Mold Operation J: Assembly Site Code W: Wafer Fab Site Code ## **Packaging Mechanical** ### 8-SOIC (W) Max 1.10 0.15 0.95 0.38 0.23
3.20 5.15 3.20 8° ## 8-MSOP (U) - 1. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES IN DEGREES. - 2. REFER JEDEC MO-187FIAB 3. PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BURR. 4. LAND PATTERN REFERENCE DIODES MSOP-8 PACKAGE INFORMATION. | DECDES PERICON STRUCTURE PROPERTY PROPE | DATE: 11/04/19 | |--|----------------| | DESCRIPTION: 8-Pin, Mini Small Outline Package, MSC |)P | | PACKAGE CODE: U (U8) | | | DOCUMENT CONTROL #: PD-1261 | REVISION: H | 19-1147 ## 8- TDFN (ZE) 20-1348 ## For latest package info. please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/ ## **Ordering Information** | Part Number | Package Code | Package Description | |--------------|--------------|--| | PT7C4337WEX | W | 8-Pin, 150mil-Wide (SOIC) | | PT7C4337UEX | U | 8-Pin, Mini Small Outline Package (MSOP) | | PT7C4337LEX | L | 8-Pin, 173mil Wide (TSSOP) | | PT7C4337ZEEX | ZE | 8-Pin, 2x3 (WDFN) | ## Notes: - ${\tt No~purposely~added~lead.~Fully~EU~Directive~2002/95/EC~(RoHS),~2011/65/EU~(RoHS~2)~\&~2015/863/EU~(RoHS~3)~compliant.}\\$ - 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. - 4. E = Pb-free and Green - 5. X suffix = Tape/Reel #### IMPORTANT NOTICE - 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). - 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications. - 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities. - 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document. - 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. - 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application. - 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes. - 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use. Copyright © 2021 Diodes Incorporated www.diodes.com ## 深圳市致新科科技有限公司 ## Shenzhen Zhixinke Technology Co., Ltd. #### 阻容器件 | 插件电解电容 | 贴片铝电解电容 | 贴片电容 MLCC | 钽电容 | 薄膜电容 | |--------|---------|-----------|------|-------| | 贴片电阻 | 热敏电阻 | 压敏电阻 | 碳膜电阻 | 金属膜电阻 | ### 高压MOS(N-400V N-500V N-600V N-650V N-700V N-800V N-900V / 电流: 0.5A~26A区间 电压电流选型) | 2N65 650V | 2A | T0-252 | 7N60 | 600V | 7A | T0-252 | 8N65 | 650V | 8A | T0-251 | 10N50 | 500V | 10A | T0-220F | 15N50 | 500V | 15A | TO-220F | | |-----------|----|---------|------|------|----|---------|------|------|----|--------|-------|------|-----|---------|-------|------|-----|---------|--| | 4N65 650V | 4A | TO-220F | 7N65 | 650V | 7A | TO-220F | 8N65 | 650V | 8A | T0-252 | 12N65 | 650V | 12A | TO-220F | 15N65 | 650V | 15A | TO-220F | | | 5N60 600V | 5A | TO-220F | 7N65 | 650V | 7A | T0-252 | 8N65 | 650V | 8A | T0-252 | 12N70 | 700V | 12A | TO-220F | 15N70 | 700V | 10A | TO-220F | | | 5N65 650V | 5A | T0-252 | 7N70 | 700V | 7A | TO-220F | 9N70 | 700V | 9A | T0-252 | 13N50 | 500V | 13A | T0-220F | 20N50 | 500V | 20A | T0-220F | | ### 低压MOS (电流: -160A~300A区间选型) | N+P 20V | P -100V | Dual N 30V | N 30V | N 75V | |-------------|---------|-------------|-------|--------| | N+P 30V | P -12V | Dual N 100V | N 40V | N 85V | | N+P 40V | P -16V | Dual N 20V | N 55V | N 100V | | Dual P -30V | P -20V | Dual N 40V | N 60V | N 150V | | Dual P -60V | P -40V | N 20V | N 68V | N 200V | ### 二极管专业制造商(定制产品,需要一周~二周时间)参数查看选型表 | 超低正向肖特基整流二极管 | 肖特基整流二极管 | 普通整流二极管 | 快恢复整流二极管 | 高效整流二极管 |
--------------|----------|-----------|----------|---------| | 超快恢复整流二极管 | 双向触发二极管 | 瞬变电压抑制二极管 | 稳压二极管 | 桥式整流器 | | 小信号肖特基二极管 | 小信号开关二极管 | 光伏二极管 | 汽车整流器 | 高压触发管 | ### 桥式整流器专业制造(定制产品,需要一周~二周时间) | 芯片尺寸/类别 | |-------------| | 50MIL DBS | | 60MIL DBS | | 60MIL DBS | | 70MIL DBS | | 50MIL DB | | 60MIL DB | | 60MIL DB | | 70MIL DB | | 50MIL KBP | | 60MIL KBP | | 70MIL KBP | | 50MIL GBP短脚 | | 60MIL GBP短脚 | | 70MIL GBP短脚 | | 84MIL GBP短脚 | | 88MIL GBP短脚 | | 50MIL GBP长脚 | | 60MIL GBP长脚 | | 70MIL GBP长脚 | | 84MIL GBP长脚 | | 88MIL GBP长脚 | | 60MIL D3K | | 70MIL D3K | | 84MIL D3K | | 70MIL KBL | | 84MIL KBL | | 88MIL KBL | | 70MIL GBU | | 84MIL GBU | | | DB-S **KBP** **GBP** **D3K** 型号 芯片尺寸/类别 GBU606-GBU610 88MIL GBU806-GBU810 95MIL GBU GBU1006-GBU1010 100MIL GBU GBU1506-GBU1510 GBU 110MILGBU2506-GBU2510 130MIL GBU GBJ406-410 84MIL 4GB.J GBJ606-610 88MIL 4GBJ GBJ806-810 95MIL 4GB.J GBJ1006-1010 100MIL 4GB.J GBJ1506-1510 110MIL 4GB.J GBJ2506-2510 130MIL 4GBJ GBJ1506-1510 110MIL 6GBJ GBJ1506-1510 120MIL 6GBJ GBJ2506-2510 130MIL 6GBJ GBJ3506-3510 140MTL 6GBJ GBJ3506-3510 160MIL 6GBJ KBJ406-410 84MIL KBJ (4GBJ) KBJ606-610 **88MIL** KBJ (4GBJ) KBJ806-810 95MIL KBJ (4GBJ) KBJ1006-1010 100MIL KBJ (4GBJ) KBJ (4GBJ) KBJ1506-1510 110MIL KBJ2506-2510 KBJ (4GBJ) 130MIL MB6S-10S 46MIL **MBS** MB6S-10S 50MIL **MBS** MB6F-10F 46MIL **MBF** MB6F-10F 50MIL **MBF** ABS6-ABS10 46MIL ABS ABS6-ABS10 50MIL **ABS** ABS6-ABS10 60MIL ABS # 深圳市致新科科技有限公司 ## Shenzhen Zhixinke Technology Co., Ltd. ## 光耦 红外对射 | EL0631 | EL814 | LTV-217 | KAQY212 | MOC3022 | |---------|---------|----------|----------|------------| | EL1018 | EL817 | LTV-247 | KMOC3021 | MOC3023 | | EL1019 | ELM440A | LTV-3063 | KMOC3022 | MOC3042 | | EL2501 | ELM453 | LTV-3223 | KMOC3023 | MOC3052 | | EL3041 | ELM611 | LTV-356 | KMOC3041 | MOC3063 | | EL3063 | ELQ3H4 | LTV-357 | KMOC3042 | MOC3043 | | EL354 | ELQ3H7 | LTV-814 | KMOC3043 | HS0038BD | | EL357 | ELR3223 | LTV-816 | KMOC3063 | IR204C-A-L | | EL3H4 | ELS3120 | LTV-817 | KMOC3083 | IR333C-A | | EL3H7 | ELS3150 | CT3043 | FOD814 | ITR1100 | | EL406A | ELS680 | CT3063 | 6N137 | ITR8102 | | EL6N137 | CT3023 | CTT3223 | MOC3021 | ITR8402 | ## 长晶 JSCJ (原名长电) | 1N4148WS | SOD323 | BC547 | T092 | BZT52C3V6 | SOD123 | CJ431 | SOT-23 | MMBT3904 | SOT23 | |----------|----------|-----------|----------|------------|---------|----------|----------|----------|--------| | 2N5551 | TO-92 | BC548 | T092 | BZT52C3V9 | SOD123 | СЈ7812 | T0220-3L | MMBT540 | SOT23 | | 2SA1013 | S0T89-3L | BCX56-16 | S0T89-3L | BZT52C5V1 | SOD123 | СЈ7815 | T0252-2L | MMBTA44 | SOT-23 | | 2SB1386 | SOT89 | BD237 | T0126 | BZT52C6V2 | SOD123 | CJ78L05 | S0T89 | MMBTA94 | SOT23 | | 2SC1623 | SOT23 | BSS123 | S0T23 | BZT52C6V8S | SOD323 | CJ78L08 | S0T89 | MMSZ4689 | SOD123 | | 2SC1815 | T092 | BU406 | T0220-3L | BZT52C8V2 | SOD123 | CJ78L12 | S0T89 | RS3M | SMBG | | 2SC2712 | SOT-23 | BZT52C10 | SOD123 | BZX84C15 | S0T23 | CJ78M05 | T0252 | S8050 | SOT23 | | 2SD1724 | T0-126 | BZT52C12 | SOD123 | C1815 | T092F | CJ78M06 | T0252 | S8550 | SOT23 | | 2SD965A | SOT89 | BZT52C15 | SOD123 | CJ2301 | S0T23 | CJ78M12 | T0252 | S9012 | SOT23 | | B0530WS | SOD323 | BZT52C18 | SOD123 | CJ2302 | S0T23-3 | CJ79L05 | T092 | S9013 | SOT23 | | B5819W | SOD123 | BZT52C22S | SOD323 | СЈ2304 | SOT-23 | D882 | T0126 | S9014 | SOT23 | | BAT54 | S0T23-3 | BZT52C24V | SOD123 | СЈ2306 | S0T23 | ES2J | SMAG | S9015 | SOT23 | | BAV99 | SOT23 | BZT52C30 | SOD123 | СЈ2310 | SOT23 | LM317 | S0T223 | SD103AW | SOD123 | | BC546B | T092 | BZT52C3V3 | SOD123 | СЈ3415 | S0T23-3 | MCR100-8 | T092 | TIP122 | T0126 | ## 圣邦微 (SGMICRO) | SGM2019 | SGM3110-5. OYN6/TR | SGM4056-6.8YPS8G/TR | SGM6232YPS8G/TR | SGM809 | |-------------------|--------------------|----------------------|-------------------|-------------------| | SGM2021 | SGM3132YDE8G/TR | SGM4056-6.8YTDE8G/TR | SGM6603 | SGM810 | | SGM2032 | SGM3157YC6/TR | SGM4062YDE8G/TR | SGM6609YTDF12G/TR | SGM8272YS8G/TR | | SGM2033 | SGM3206YN5G/TR | SGM4064YDE8G/TR | SGM706 | SGM8522XS/TR | | SGM2036 | SGM321YN5/TR | SGM44599YTQ16/TR | SGM721XN5/TR | SGM8582XS8G/TR | | SGM2200 | SGM324YS14/TR | SGM4582YTS16G/TR | SGM7222YMS10/TR | SGM8632XMS/TR | | SGM2203 | SGM330A-YQS/TR | SGM4807YTDE8G/TR | SGM7222YWQ10/TR | SGM8632XS/TR | | SGM2268YWQ10/TR | SGM331A-YQS16G/TR | SGM4871YPS8/TR | SGM7227YMS10G/TR | SGM8634XS14/TR | | SGM2549YN6G/TR | SGM358YMS/TR | SGM4890YMS/TR | SGM7227YUWQ10G/TR | SGM89000YTS14G/TR | | SGM2551AYN5G/TR | SGM358YS/TR | SGM4891YDE8G/TR | SGM7228YWQ10G/TR | SGM8903YTS14G/TR | | SGM2554AYN5G/TR | SGM3700YTQ16G/TR | SGM4917AYTQ16G/TR | SGM722XMS/TR | SGM8904YMS10G/TR | | SGM2571ADYG/TR | SGM3732YTN6G/TR | SGM4918AYD10G/TR | SGM722XS/TR | SGM9111YC5/TR | | SGM2576YN5G/TR | SGM3733BYTDI6G/TR | SGM4996YMS8G/TR | SGM8051XN5/TR | SGM9114YN6G/TR | | SGM2578YG/TR | SGM3752YTN6G/TR | SGM6012 | SGM8054XS/TR | SGM9116XS/TR | | DIODEC(美女) DAN 五年 | 引速 (= -= | | | | ### DIODES(美台) PAM 百利通(pericom) | AL1666S-13 | AL8863SP-13 | APT17NTR-G1 | PAM2861ABR | PAM8403DR-H | |-----------------|------------------|----------------|--------------|---------------| | AL1692-30BS7-13 | AP1084D25G-13 | AS78L05RTR-E1 | PAM2861CBR | PAM8404KGR | | AL1692S-13 | AP1084D33G-13 | AZ1117 | PAM2863ECR | PAM8406DR | | AL1697-40DS7-13 | AP1501-50K5G-13 | AZ34063UMTR-G1 | PAM8003DR | PAM8610TR | | AL17050WT-7 | AP1501-K5G-13 | AZ431AN-ATRE1 | PAM8004DR | PAM8620TR | | AL3353S-13 | AP1603WG-7 | PAM2301CAABADJ | PAM8006ATR | PAM8902HKER | | AL5812MP-13 | AP2127K-ADJTRG1 | PAM2305AABADJ | PAM8007NHR | PAM8904JER | | AL8805W5-7 | AP2204K-3.3TRG1 | PAM2305CGFADJ | PAM8106TVR | PAM8908JER | | AL8807W5-7 | AP2204K-5. 0TRG1 | PAM2312AABADJ | PAM8124RHR | PAM8908JER | | AL8808WT-7 | AP2204K-ADJTRG1 | PAM2401SCADJ | PAM8301AAF | PAM8945PJR | | AL8843SP-13 | AP2210N-3.3TRG1 | PAM2421AECADJR | PAM8302AADCR | SMAJ5.0A-13-F | | AL8860MP-13 | AP3012KTR-G1 | PAM2423AECADJR | PAM8302AASCR | ZXMP10A13FTA | | AL8860WT-7 | AP4310AMTR-G1 | PAM2803AAF095 | PAM8303DBSC | PT7C4302WEX | | AL8861WT-7 | AP4313KTR-G1 | PAM2804AAB010 | PAM8304ASR | PT7C4337UEX | | AL8861Y-13 | AP7333-33SAG-7 | PAM2808BLBR | PAM8320RDR | PT7C4337WEX | | | | | | | # 深圳市致新科科技有限公司 ## Shenzhen Zhixinke Technology Co., Ltd. #### 微盟 (Microne) | ME1117 MET1117 | ME3116AM6G | ME431BXG | ME6210 | ME8115BD7G | | |----------------|--------------|--------------|--------------|--------------|--| | ME1502CM5G | ME321AM5G | ME6118A33B3G | ME6211 | ME8115D7G | | | ME2107A50M5G | ME358ASG | ME6119C33M5G | ME6212 | ME8125AS6G | | | ME2108 | ME4054BM5G | ME6203A50M3G | ME6213C33M5G | ME8165GD8G | | | ME2188 | ME4055AM6G | ME6206 | ME6214C18M5G | ME8202SG | | | ME2214AM6G | ME4056SPG | ME6206A33M3G | ME6215C25M5G | ME8321AS7G | | | ME2807A30M3G | ME4074AM5G | ME6208 | ME6216A30XG | ME8327BS7G-N | | | ME3102BM5G | ME4211AM6G | ME6209 | ME6228 | MEL7135PG-N | | | ME3110AM6G | ME4313CM6G | ME6209A50M3G | ME6230 | MEL7136AP5G | | | 恩智浦(NXP) 安世 | 半导体(NXPERIA) | | | | | | 2N7002 | 74HC238PW | 74HC574D | BCX51-16 | HEF4094BT | | |---------------------|------------|-----------|------------|-------------|--| | 74HC00D | 74HC245D | 74HC595D | BT137-800E | HEF4511BT | | | 74HC04D | 74HC245DB | 74HC595N | BT139-800E | PCF8563T | | | 74HC08D | 74HC245N | 74HC74D | BT151-500R | PCF8563T/5 | | | 74HC125D | 74HC245PW | 74HC86D | HEF4001BP | PCF8563TS/5 | | | 74HC138D | 74HC257D | 74HCT164D | HEF40106BP | PMBT3904 | | | 74HC138PW | 74HC373N | 74HCU04D | HEF4011BP | PMBT3906 | | | 74HC14D | 74HC393D | BA591 | HEF4011BT | PRTR5V0U2X | | | 74HC154D | 74HC4051D | BAT54 | HEF4012BP | TJA1021T | | | 74HC157D | 74HC4051PW | BAV199 | HEF4013BP | TJA1027T | | | 74HC164D | 74HC4066D | BAV99 | HEF4013BT | TJA1040T | | | 74HC164PW | 74HC4316D | BC817-40 | HEF4051BT | TJA1042T | | | 74HC165D | 74HC4538D | BC846B | HEF4069UBT | TJA1044T | | | 74HC238D | 74HC573D | BC858B | HEF4093BP | TJA1050T | | | 6+ 111 (), HH (m=a) | | | | | | ## 德州仪器(TIS) | CD14538BE | LM2576S | NE5532 | SN74HC273 | TLV75718PDBVR | |--------------|-------------|-------------------|-------------------|---------------| | CD4001BE | LM258DGKR | OPO7CDR | SN74HC595 | TLV75728PDBVR | | CD40106BE | LM2596SX | OPO7CP | SN74LVC1G08DCKR | TPA3116D2 | | CD4011BE | LM2901 | PCA9306DCUR | SN74LVC1G175DCKR | TPS23881RTQR | | CD4012BE | LM2902 | SN65C1168ERGYR | SN74LVC1G3157DBVR | TPS2412PWR | | CD4013BE | LM2903 | SN65HVD230DR | SN74LVC1G32DRLR | TPS54331DDAR | | CD4017BM96 | LM2904 | SN65HVD231DR | SN74LVC2G07DBVR | TPS54620RGYR | | CD4026BE | LM317 | SN65LBC184 | SN74LVC2T45DCUR | TPS62291DRVR | | CD4050 | LM321 | SN74AHC1G08DBVR | TL081CP | TPS62410DRCR | | CD4051 | LM324 | SN74AHC1G86DCK | TL082BCDR | TPS63000DRCR | | CD4052 | LM339 | SN74AHC1GU04DRLR | TL084CN | TPS63020DSJR | | CD4053 | LM358 | SN74AVC16T245DGGR | TL431 | TPS76330DBVR | | CD4069UBE | LM393 | SN74HC04 | TL494CDR | TSS721ADR | | CD4081BE | LMV321IDBVR | SN74HC138 | TLC272CDR | TXS0102DCUR | | CD74HC221M96 | LMV324ID | SN74HC14 | TLC274CD | UCC28070PWR | | DRV8837DSGR | MAX202 | SN74HC148 | TLV272CDR | UCC28180 | | L298N | MAX232 | SN74HC165 | TLV62569DBVR | ULN2003 | | LM224DR | MAX3232 | SN74HC244 | TLV70033DDCR | ULN2004 | | 会外水 自体 (cmr) | | | | | #### 意法半导体(STM) | ₩ (DIM) | | | | | |---------------|---------------|---------------|---------------|---------------| | BTA08-600CRG | L78L05ACUTR | M24C64-RMN6TP | STM32F207ZET6 | STM8S103F3P6 | | BTA08-800CRG | L78MO5CDT | ST1S10PHR | STM32F401CEU6 | STM8S103K3T6C | | BTB04-600SL | L78M08ABDT | STM32F030C6T6 | STM32F405RGT6 | STM8S105C6T6 | | HCF4052M013TR | LM258AD | STM32F030C8T6 | STM32F407VET6 | STM8S105K4T6C | | L298N | LM2903 | STM32F030F4P6 | STM32F407VGT6 | STM8S105S4T6C | | L6562DTR | LM2904 | STM32F030K6T6 | STM32F407ZET6 | STM8S105S6T6 | | L6599ATDTR | LM293 | STM32F051C8T6 | STM32F407ZGT6 | STM8S207RBT6 | | L7805CDT | LM317T | STM32F071VBT6 | STM32F429IET6 | TDA2030AV | | L7805CV | LM324 | STM32F103C8T6 | STM32G070RBT6 | TDA7265 | | L7806CV | LM335 | STM32F103R8T6 | STM32L475VET6 |
TDA7851L | | L7809CV | LM339 | STM32F103RCT6 | STM8L051F3P6 | TIP122 | | L7812CV | LM358 | STM32F103VCT6 | STM8L052C6T6 | VIPER12ADIP-E | | L7815CD2T-TR | LM393 | STM32F105RBT6 | STM8S003F3P6 | VIPER17LN | | L78L05ABUTR | M24C02-WMN6TP | STM32F107VCT6 | STM8S005K6T6C | VIPER22ASTR | # 深圳市致新科科技有限公司 Shenzhen Zhixinke Technology Co., Ltd. #### 安森美(ONS) 仙童(FAIRCHILD) | 安森美(ONS) 仙堇(I | FAIRCHILD) | | | | |-----------------------------|------------------|------------------|--------------------|--------------------| | 6N137 | LM339DR2G | MC33063ADR2G | MC78M08CDTRKG | MMBT3906LT1G | | LM2902DR2G | LM393DR2G | MC34063ADR2G | MC7915CD2TR4G | MMBT8550LT1G | | LM2903DR2G | LM358DR2G | MC7805 | MC7915CTG | SG3525ANG | | LM2904DR2G | MBR20100CTG | MC7812CDTRKG | MC79MO5BDTRKG | UC2843BNG | | LM317LBDR2G | MBRS340T3G | MC7815CTG | MC79M15CDTRKG | UC2844BD1R2G | | LM324DR2G | MBRS540T3G | MC78L05ACDR2G | MMBT3904LT1G | UC3845BNG | | MAXLINEAR 艾科嘉(| EXAR) 西伯斯(SIPEX) | ' | | | | SP202EEN-L/TR | SP3222EEA-L/TR | SP3243EUEA-L/TR | SP485EEN-L/TR | SPX5205M5-L-3.3/TR | | SP232EEN-L/TR | SP3232EBEA-L/TR | SP336EEY-L/TR | SPX29302T5-L/TR | SPX5205M5-L-5.0/TR | | SP3220EEY-L/TR | SP3232EEY-L/TR | SP3485EN-L/TR | SPX3819M5-L-3-3/TR | SPX1117 | | 新日本无线(JRC) | | <u> </u> | | | | NJM2035M | NJM2370U33 | NJM2831F33 | NJM3414AM | NJM78M05DL1A | | NJM2274R | NJM2567V | NJM3404AV | NJM4558M | NJM79M05DL1A | | 美信(MAXIM) 达拉期 | | | | | | DS1302 | DS1337 | MAX232AEPE | MAX232CSE | MAX3232IPWR | | DS1307 | MAX17126ETM | MAX232AEPE | MAX232ESE | MAX485ESA | | DS1338Z | MAX1771CSA | MAX232AESE | MAX232N | MAX6701BAUT30 | | DS2431P | MAX202CPW | MAX232CPE | MAX3088ESA | MAX9722AETE | | 微芯(MICROCHIP) 爱 | | | | | | AT24C02C-SSHM-T | AT24C64D-SSHM-T | PIC16F1936-I/S0 | PIC16F505-I/SL | PIC16F723A-I/SS | | AT24C04C-SSHM-T | PIC12F1822-I/SN | PIC16F1938-I/S0 | PIC16F54-I/S0 | PIC16F723-I/S0 | | AT24C16C-SSHM-T | PIC12F508-I/P | PIC16F1938-I/SS | PIC16F676-I/SL | PIC16F883-I/SS | | AT24C256C-SSHL-T | PIC16F1826-I/S0 | PIC16F1947-I/PT | PIC16F722A-I/SS | PIC16F914-I/PT | | STC | 1101011020 1, 50 | 1 101011011 1/11 | 1101011-11111111 | 1 10101011 1,11 | | STC15W4K32S4 | STC12C5A32S2 | STC15W204S | STC8A8K48D4 | STC8H1K08 | | STC13#4K3234
STC8H3K64S4 | STC12C5A32S2 | STC15W404AS | STC8A8K64D4 | STC8H3K32S2 | | STC11L32XE | STC12C5A56S2 | STC15W4K32S4 | STC8A8K64S4A12 | STC8H3K48S | | STC11L60XE | STC15F2K08S2 | STC15W4K48S4 | STC8F1K08S2 | STC8H3K48S4 | | STC12C5604AD | STC15L204EA | STC89C55RD | STC8F2K16S2 | STC8H8K48U | | STC12C5A08AD | STC15W104 | STC8A8K32S4A12 | STC8G1K08A | STC8H8K64U | | 华邦(WINBOND) | 510101101 | STOOMOROUS INTE | orcoomoon | 5 Tooliono To | | W25Q128FVSIG | W25Q128JVSIQ | W25Q128JWPIQ | W25Q16JVSSIQ | W25Q32JWSNIQ | | | #29&120J\21& | WZJ&1Z0JWI1W | #20Q10J1331Q | #ZJQJZJ#JNIQ | | 美国芯源(MPS) | WD 4 0 = 0 0 m D | WD00004DW 4 D G | MD COORD B | VD0==000 G | | MP1471AGJ-Z | MP1653GTF-Z | MP2303ADN-LF-Z | MP2636GR-Z | MP8756GD-Z | | MP1482DS-LF-Z | MP1657GTF-Z | MP2359DJ-LF-Z | MP3202DJ-LF-Z | MP9447GL-Z | | MP1484EN-LF-Z | MP1658GTF-Z | MP2374DS-LF-Z | MP3426DL-LF-Z | MP9495DJ-LF-Z | | MP1494DJ-LF-Z | MP2015AGG-33-Z | MP24943DN-LF-Z | MP5013AGJ-Z | MP9518GJS | | MP1601GTF-Z | MP2122GJ-Z | MP26029GTF | MP6650GJS | NB679GD-Z | | MP1605GTF-Z | MP2144GJ-Z | MP2603EJ-LF-Z | MP8126DF-LF-Z | NB680GD-Z | | 昂宝电子(On-Bright | | ana a a un | - Innecessing | 00000000 | | OB3635 | OB2222MCP | OB2263MP | OB2281MP | OB2535CPA | | OB2212AP | OB2263AP | OB2273AMP | OB2356LCPA | OB3636MP | | 电池芯片 马达驱动 | | | | | | 4054 SOT23-5 | CW1053 | HP4011 | LN8238A | TC118 | | 4056 ESOP8 | DWO2R | HY2213 | FM8002A | TC618CS | | CW1051 | DW06D | IP5305 | TC117HS | TMI8118S | | 其它IC | | | | | | RTL8201CP-VD-LF | IT7C4337WEX | IT8563UEX | HYM8563 | TH10CA061 | | RTL8201F-VB-CG | IT8563WEX | BM8563 | AiP8563 | TH11CA031 | 我司本着"质量为第一"的理念,通过正规渠道采购物料,专业采购师对采购物料要求严格, 保证质量,在业界获得好评,货源优秀,港深两地常备原装现货。买原装正品IC,找致新科。